These are some facts and theorems on fibonacci numbers that are often useful for various problems.

Wiki Link: Fibonacci Number


Definitions

Fibonacci Sequence : A sequence of integers $F_0, F_1, \cdots$ such that $F_{n} = F_{n-1} + F_{n - 2}$ for all $n \geqslant 1$, with, $F_0 = 0$ and $F_1 = 1$.

Lucas Sequence: $L_n = F_{n-1} + F_{n + 1}$

Golden Ratio: $\phi = \frac{1+\sqrt{5}}{2}$

Binet’s Formula:

\[F_{n}=\frac{1}{\sqrt{5}}\left(\frac{\sqrt{5}+1}{2}\right)^{n}-\frac{(-1)^{n}}{\sqrt{5}}\left(\frac{\sqrt{5}-1}{2}\right)^{n}\]

for $n \geq 0$.


Properties

  1. (Strong Divisibility)
    \(\gcd(F_n, F_m) = F_{\gcd(n,m)}\)

  2. (GCD Rule)
    \(\gcd(F_n, F_{n-1}) = 1\)

  3. (Divisibility Sequence)
    \(m \mid n \implies F_m \mid F_n\)

  4. (Cassini’s Identity)
    \(F_{n-1}F_{n+1} - F_n^2 = (-1)^n\)

  5. (Matrix Power Form)
    \(\begin{pmatrix}1 & 1\\1 & 0\end{pmatrix}^n = \begin{pmatrix}F_{n+1} & F_n\\F_n & F_{n-1}\end{pmatrix}\)

  6. (Parity) $F_n$ is even iff $n$ is divisible by $3$

  7. (Lucas Identity)
    \(F_n^2 + F_{n+1}^2 = F_{2n+1}\)

  8. (Fibonacci Generating Function)
    \(\sum_{n=1}^{\infty} F_n x^n = \frac{x}{1-x-x^2}\)

  9. (Finite Sum)
    \(F_1 + F_2 + \cdots + F_n = F_{n+2} - 1\)

  10. (Balls and Urns Formulation)
    \(F_n = \sum_{k=0}^{n-1} \binom{n-k-1}{k} \quad \text{or} \quad \sum_{k=1}^{n} \binom{n-k}{k-1}\)

  11. (Fibonacci Limit Theorem)
    \(\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \phi\)

  12. (Gap Telescope)
    \(\frac{1}{F_{n-1}F_{n+1}} = \frac{1}{F_{n-1}F_n} - \frac{1}{F_n F_{n+1}}\)

  13. (Difference Rule)
    \(F_n F_{n+1} = F_n^2 + F_{n-1}F_n\)

  14. (Square Sum)
    \(\sum_{k=1}^{n} F_k^2 = F_n F_{n+1}\)

  15. (Double Sum)
    \(F_m F_{n+1} + F_{m-1} F_n = F_{n+m}\)

  16. (Triple Sum)
    \(F_a F_{a+b+c} - F_{a+b} F_{a+c} = (-1)^{a+1} F_b F_c\)

  17. (First Form Inequality)
    \(F_k > F_{k-2} + F_{k-3} + \cdots + F_2\)

  18. (Sum of the First $n$ Odd-Indexed)
    \(\sum_{i=1}^{n} F_{2i-1} = F_{2n}\)

  19. (Sum of the First $n$ Even-Indexed)
    \(\sum_{i=1}^{n} F_{2i} = F_{2n+1} - 1\)

  20. (Gelin-Cesàro Identity)
    \(F_n^4 - F_{n-2} F_{n-1} F_{n+1} F_{n+2} = 1, \quad n \ge 3\)


Fact File

Fact 1: The only Fibonacci numbers that are squares are $0, 1, 144.$ Proof

Fact 2: Every positive integer $m$, there is a Fibonacci number divisible by $m$. Proof also see, AoPS

Fact 3: A number $x$ is fibonacci if $5x^2 \pm 4$ is a square. Another way to test if a number is fibonacci is to invert binet’s formula.

Fact 4: The ratio of two successive term in the Fibonacci Sequence, i.e, $\displaystyle G_n = \frac{F_{n+1}}{F_n}$


Theorems